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Overview

l Goals
l Basic Constructs
l Impact on SIDL/Babel
l Benefits for the CCA
l Future Work
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Why support assertions at the interface 
specification level?

The interface specification can provide a simple, 
concise description of the requirements, behavior, 

and constraints.

Generated code will automatically ensure 
compliance regardless of the underlying 

implementation language.
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The SIDL grammar defines packages, 
interfaces, etc.

l Packages & Versions
l Interfaces & Classes
l Inheritance Model
l Methods
l Method Modifiers
l Intrinsic Data Types
l Parameter Modes
l And more…

Optional
assertion 
specifications 
added here
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There are several types of assertions 
mentioned in the literature.

l An integer value that must be non-negative prior 
to first execution of a loop and decreased by 
every iteration to guarantee loop termination

Loop Variant

l Instance properties that must be true prior to
the first execution of a loop and preserved by 
every iteration so hold on loop termination

Loop Invariant

l Global properties of instances that must be true
upon instance creation and preserved by all 
routines before and after every invocation

Class 
Invariant

l Guarantees of proper method function
l Conditions that must be true after invocation

Postcondition

l Constraints to enable proper method function
l Conditions that must be true prior to invocation  

Precondition
Express…Type
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Only the first two Design by Contract 
clauses will be added at this time.

l Specify library’s guarantees
l Obligations on callee to provided
preconditions were satisfied and no 
exceptions raised

Postconditions

l Specify library’s requirements
l Obligations on callers

Preconditions
CommentClause

Method sequencing will be implemented using a sequence, or state , clause the 
values of which can be utilized in the pre- and post-conditions to specify method 
ordering.
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The new clauses require a number of 
additions to the SIDL grammar.

l Eiffel keywords
—Preconditions requires
—Postconditions ensures

l Simple conditional expression operators
—Logical &&, ||, !
—Bitwise Logical &, ^, |
—Relational <, <=, ==, !=, >=, >
—Shift <<, >>
—Additive +, -
—Multiplicative *, /, %

l Logical grouping ()

l Literal keywords TRUE, FALSE, NULL, return

l Terminals
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The following specification snippet 
illustrates the use of both clauses in SIDL.

interface Vector {
Vector axpy (in Vector a, in Vector x) {

requires a != NULL;
x != NULL;

ensures return != NULL;
};
double norm () {

ensures return >= 0.0;
};

Vector.sidl

Recall:  If method raises an exception then no guarantee the ensures will be met!
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If method sequencing were incorporated, 
call ordering state would be added. 

interface Vector {
state { uninitialized, initialized };

void setData (in double data){
requires uninitialized;

ensures initialized;

};

…

VectorWithOrdering.sidl

Note:  Sequencing constructs subject to change.

First item is the initial state.

Transition to initialized
is automatic if library 
call is successful and all 
(other) postcondition 
entries met.
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Methods that require the instance to be in 
a state could annotate it accordingly. 

interface Vector {
…
Vector axpy (in Vector a, in Vector x) {

requires initialized;
a != NULL;
x != NULL;

ensures return != NULL;
};
double norm () {

requires initialized;
ensures return >= 0.0;

};

VectorWithOrdering.sidl
Note:  Sequencing constructs subject to change.
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Babel takes a SIDL file and will generate 
expanded glue code.

Application

Impls

Stubs

Skels

IORs

SIDL 
interface

description

Enforcement code 
added here.
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The IOR files will be changed to add the 
generated checks.

Vector.sidl

foo.f

Vector_IOR.c

Vector_IOR.h
Vector_fSkel.c

Vector.fif

Vector_Impl.f

Vector_fStub.c
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There will be three execution paths 
available through the IOR.

Call

Preconditions

Preconditions

Postconditions

ReturnLibrary
method

1

2

3
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Dynamic switching between paths can be 
available at up to four levels.

l Instance
—Vector.__create(/* desired setting */);
—Vector.__noChecks(); // Path #1
—Vector.__checkRequires(); // Path #2
—Vector.__checkAsserts(); // Path #3

l Class -- For all instances of a class 
l Package -- For a subset of packages
l Global -- Through the SIDL Loader

What degree of flexibility is needed?
- Dynamic switching at the Class level?  Package level?  Loader level?
- Regular expression support for specifying classes?  Packages?
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Violations of assertions will result in the 
raising of new SIDL exceptions.

getNote(): string
setNote(string)
getTrace():string
add[Line](string)
add(string, int, string)

BaseException

RequiresViolation EnsuresViolation

One or more requires
conditions  failed!

One or more ensures
conditions failed!
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Which means several parser-related files 
must change in the compiler.

New file(s) associated with the assertion 
list productions to support the lists.

symbols/
newclass(es).java

Add support for assertion lists.symbols/
Method.java

Add parsing for new structures from 
XML.

parsers/xml/
ParseSymbolXML.java

Add support for the new grammar 
productions.

parsers/sidl/
SIDL.jj

Add elements for the assertion lists and 
conditions.

dtds/
SIDL.dtd

Change(s)File
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The backends must also be modified to 
support the IOR and stub changes.

Add support for new built-in 
methods for dynamic 
switching.

backend/language/StubHeader.java*
backend/language/StubSource.java*

Add support for new built-in 
methods for dynamic 
switching and the new entry 
point vectors.

backend/IOR.java
backend/IOR/IORHeader.java
backend/IOR/IORSource.java

Change(s)Files

* These or their equivalent are generally present for each supported language.
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Interface-level assertions will ultimately 
facilitate wider reuse of CCA Components!

For Domain Scientists, 
components will be:
+ well-debugged
+ well-documented
+ easier to use

For Library developers :
+ requirements explicit
+ constraints explicit
+ sequencing explicit
+ automatic enforcement
+ enhanced debugging
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Future work focuses on adding and 
exploring more features.

l Add support for specifying and enforcing method 
sequencing

l Explore annotations and mechanisms for:
—Enabling the use of a method within assertions 

(e.g., const or immutable) 
—Checking features of an instance

(e.g., comparing sizes of two matrices or vectors)
— Integrating and checking relevant domain-specific 

properties (e.g., standard units, types of matrices)
– Automated determination of compatibility

– Generation and automated use of translation routines

l Anything else?


